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1. BACKGROUND OF THE DOCUMENT 

1.1. EXECUTIVE SUMMARY 

This ATBD (Algorithm Theoretical Based Document) describes the proposed algorithm for 

the production of crop maps along the season combining Sentinel-1, -2 and -3 proxy images 

with justification of the choices made. The objective assigned is to derive reliable (accuracy 

target set at 85%) crop maps as soon in the season as possible capitalizing on the 

advantage of each sensor: the temporal coverage of Sentinel­3, the high resolution of 

Sentinel­2 and the weather independent acquisitions of Sentinel­1. The output maps would 

support within season crop specific biophysical variable retrieval and area estimation. 

The product consists in three different layers: (1) a cropland mask delivered at the 

beginning of the growing season, (2) a crop group map delivered at the end of the winter and 

(3) a crop type map updated along the growing season. The method has been developed 

and validated on two large sites to simulate Sentinel-2 wide swath: the Tula oblast in Russia 

(25 700km²) and the Free State province in South Africa (129 825km²).  

1.2. SCOPE AND OBJECTIVES 

One of the objectives of the ImagineS project is to improve the timing and the reliability of 

crop maps, either by integrating biophysical variables (see ATBD of FAPAR per crop and 

crop area) in the classification or combining multiple data sources. Those within season crop 

type masks are required to improve both crop acreage and yield estimates that in turn will 

provide production forecasts, amongst other applications. 

More specifically, the Crop Mapping work package aims at providing sound basis for 

answering two research questions. First, it seeks to develop a methodology that combines 

the advantages of the 3 first sensor of the Sentinel programme: the temporal coverage of 

Sentinel­3, the high resolution of Sentinel­2 and the weather independent acquisitions of 

Sentinel­1. Indeed, reducing sensor dependence supports operational crop monitoring, e.g. 

in the event of sensor malfunctioning or frequent cloud occurrence. To that aim, the cropland 

description is updated along the season with an increased precision (increased number of 

classes and decreased omission and commission errors). The quantitative accuracy 

objective was set at 85%, as suggested by De Wit & Clevers (2004). The second objective is 

to assess how the large swath of Sentinel-2 could affect the classification. Indeed, vegetation 

gradient will occur within the same scene and could reduce the accuracy. If proven sensitive, 

the aim is also to propose method to mitigate this effect.  

The objective of this document is to provide a detailed description and justification of the 

algorithm proposed. It should be noted that, at the time of the writing, access to field data 

over South Africa is being negotiated. Therefore, the results shown at the moment are valid 

for the Russian site and for South Africa when field data are not mandatory. When those field 
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data will become available, the full chain will be tested and evaluated. As the final version of 

the algorithm depends on the results that will be obtained for the South African site, the 

method might be updated accordingly if necessary.  

 

1.3. CONTENT OF THE DOCUMENT 

This ATBD document is split in 3 main sections: 

1. Algorithms overview. This section contains: 

a. A definition of the proposed products; 

b. A brief description of the sensors used and the pre-processing of their 

images; 

c. The outline of the algorithms. 

2. Description of the Algorithms. This section contains: 

a. The inputs required and the outputs provided by the algorithms; 

b. The classification technique. Three sensor specific classifiers are trained 

and their outputs are merged for the final classification.  

3. Quality assessment. This section contains accuracy assessments of the three 

products for the growing season of 2013 in Russia, and of the two first products for 

South Africa 

 

1.4. RELATED DOCUMENTS 

1.4.1. Inputs 

Overview of former deliverables acting as inputs to this document. 

Document ID Descriptor 

ImagineS_RP1.1_URD Users Requirements Document 

ImagineS_RP1.2_SSD Service Specifications Document 

 

1.4.2. Output 

Overview of other deliverables for which this document is an input: 

Document ID Descriptor 

ImagineS_D4.2 Crop maps products  

ImagineS_RP6.3_PUM_CropMaps Product User Manual of the crop maps products 
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2. OVERVIEW  

2.1. STATE OF THE ART 

Recent and forthcoming development of satellite remote sensing offers many possibilities 

for mapping cropland and crop types in various agricultural landscapes. A large diversity of 

cropland mapping strategies at different scales associated with various degrees of accuracy 

can be found in the literature. 

From local to regional scale, croplands are often depicted according to land cover 

typology focusing mainly on the natural vegetation types. Crop lands are often included in 

mosaic or mixed classes making them difficult to use for agricultural applications (neither as 

agricultural mask, nor as a source for area estimates).This is typical for global land cover 

products, such as GLC2000 (Bartholomé and Belward, 2005), GlobCover 2005/2009 

(Defourny et al. 2009, Bontemps et al. 2010), GLCShare, MODIS Land Cover (Friedl et al., 

2002), which are not specifically targeting the agriculture component of the landscape. Even 

the most recent and more precise ESA Climate Change Initiative (CCI) Land Cover products 

obtained from a multi-year multi-sensor approach still consider the croplands as any other 

land cover classes (Bontemps et al., 2012). Alternatively, a few global crop maps were 

produced at global and continental scale. Pittman et al. (2010) produced the map of global 

cropland extent at 250 m spatial resolution using multi-year MODIS data and thermal data. 

Two other global maps specifically dedicated to croplands were produced with an emphasis 

on water management: the global map of rainfed cropland areas (GMRCA) (Biradar et al., 

2009) and the global irrigated area map (GIAM) (Thenkabail et al., 2009). However, their 

coarse spatial resolution (10 km) does not meet the needs for operational applications and 

suffer from large uncertainties (Portmann et al., 2000) – especially in complex farming 

systems in Africa. Several initiatives adopted existing land cover products as inputs. 

Ramankutty et al. (2008) combined two satellite-derived land cover maps (Boston 

University’s MODIS-derived land cover product (Friedl et al., 2002) and the Global Land 

Cover 2000 (GLC2000) data set (Mayaux et al., 2004)) with an agricultural inventory to 

produce the cropland mask at 10 km. One alternative for better cropland information is 

through hybridization, e.g. the integration of all available maps into a single product 

(RD.174). In that vein, Fritz et al. (2011) combined existing land use/land cover data sets 

(i.e., GLC2000, MODIS Land Cover, and GlobCover relying on expert knowledge and 

national statistics to produce a probability map of cropland areas. However, the product 

merges general land cover products that do not focus on agricultural areas and that have an 

unadapted spatial resolution for mapping cropland (from 300 m to 1 km). To cope with these 

issues, Vancutsem et al. (2013) compared and combined ten data sets through an expert-

based approach in order to create the derived map of cropland areas at 250 m covering the 

whole of African continent. Still at the regional scale, RD.28 proposed a dynamic mapping of 

cropland areas in Sub-Saharan Africa using MODIS time series. Yet, these compilation 

efforts, while being extremely valuable, present the two-fold disadvantage of being spatially 

inconsistent and out-of-date.  
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More recently, large scale remote sensing product have been completed to deliver a 

global croplands mask (Pittman et al., 2010) or a global soybean distribution map (Hansen et 

al., 2012 – oral communication). At the national level, Thenkabail and Wu (2012) developed 

an automated cropland classification algorithm combining Landsat, MODIS, and secondary 

data to differentiate cropland extent, areas, and characteristics (e.g., irrigated vs. rainfed). 

Besides, Vintrou et al. (2012) proposed a stratified approach to discriminate the cultivated 

areas in the fragmented rural landscapes of Mali.  Locally, cropland is often extracted in a 

two-step classification scheme to support further crop type distinction (Shao et al., 2010; 

Arvor et al, 2011). Crop inventory by remote sensing has been studied extensively since the 

early days of the discipline. CITARS (Crop Identification Technology assessment For 

Remote Sensing) was features in the same classification algorithm and demonstrated its 

relevance for crop type classification. Another aspect, independent from the classification 

algorithm, is related to the considered spatial unit, which can be either the pixel or the field. 

Pixel-based classification techniques often failed to determine the borders of agriculture 

parcels (Ormeci, 2010). Spatial filters increase the accuracy by removing the small inclusions 

of other classes within the dominant class (Yang et al., 2007). Parcel-based approach was 

found to be more accurate than pixel-based (Ozdarici et al., 2012). Field limits might be 

derived either from digital vector database (De Wit, A. J. W. and Clevers, 2004) or by 

segmentation (Castillejo-Gonzalez et al., 2009). Even if Sentinel-2 spatial resolution is 

expected to resolve most fields, it seems that in particular conditions (Delrue et al., 2013) 

sub-pixel approaches (as developed by Lobell and Asner, 2004; Ozdogan, 2010 and 

Atzberger and Rembold, 2012) will remain necessary. 

Similarly, many methods have been devised to extract crop cover from radar imagery 

either directly to the backscattering coefficients (Del Frate et al., 2003) or to extracted 

features such as texture indices (Yang et al., 2010), polarimetric features (Cloude and  

Pottier, 1996) or color features (Uhlmann and Kiranyaz, 2014).  Some of these radar-specific 

feature required dedicated algorithm for classification such as Wishart maximum likelihood 

classifier (Lee et al., 2001; Skriver et al., 2011, Ainsworth et al. 2009), fuzzy- (Chen and 

Chen, 2003), and complex-valued neural network (Hänsch, 2010). Of course, some research 

studies also worked on a combination of SAR and high resolution (Blaes et al., 2005) or high 

and moderate resolution (Thenkabail and Wu, 2012). 

To date most experiments looked at crop classification from an end of season point of 

view, selecting the best-suited band/date combination to maximize the classification 

accuracy. Early mapping along the growing season represent a major challenge as only 

incomplete growing season time-series information is available (Kastens et al, 2005). In such 

a context, reducing dependence on one sensor would support operational crop monitoring as 

sensor malfunction and cloud coverage at critical periods might jeopardize the accuracy 

requirements of the map (McNairn et al., 2009).  

The method proposed in this ATBD combines three different kinds of sensor and might be 

extended to more which reduces the sensor dependence and enhances the probability of 
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acquiring during a good discrimination window. Besides, this combination makes the 

classification method more robust to address the large spectrum of agro-system.  

 

2.2. THE CONSIDERED PRODUCTS  

The considered product corresponds to three layers of crop maps with an increasing level 

of details in both the legend definition and the spatial resolution as information – and thus 

potential class separability windows– accumulates along the season.  Such products are 

delivered per growing season, typically one or two growing cycle for the rainfed agriculture, 

and possibly more for the irrigated lands.  

2.2.1. Pre-seasonal cropland layer 

The pre-seasonal cropland layer (PCL) corresponds to the most up-to-date cropland map 

extent for a defined cropping season. Existing land cover information is updated based on 

the previous year to provide most current extent of the cropland according to a change 

detection approach. The pre-seasonal cropland layer distinguishes two classes: cropland – 

which is defined by the annually planted land – and non-cropland. 

2.2.2. Crop group layer 

The crop group layer (CGL) aims at further discriminating the cropland between winter 

crops and other crops which include spring crops but also fallow. Winter crops are of two 

kinds: 1) those sown before or during the winter time and that need cold temperatures to 

grow in the spring/summer (e.g. winter wheat in Russia) and 2) those having a full 

development cycle (e.g. winter wheat in South Africa). The recognition method of winter 

crops follows an automated time-series analysis approach based on the detection of an 

increase in the vegetation index during the winter. To ensure consistency between the 

products, crop groups can only occur within the cropland.  

2.2.3. Crop type layer 

The crop type layer (CTL) gives the most detailed picture of the cropland distinguishing 

the dominant crop types of a given region. Thus, the legend depends on the 

presence/absence of particular crops in the region of interest recognized thanks to a 

machine learning approach. This concerns only mono-specific agricultural fields. 

 

2.3. INSTRUMENTS' CHARACTERISTICS AND DERIVED DATA 

As the objective is to develop a method for Sentinel-1, -2 and -3 which are not yet 

operational, the method has been developed and tested on the following proxies: Radarsat-2 
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for Sentinel-1, RapidEye for Sentinel-2 and MODIS for Sentinel-3 (see Tab.1 for a 

comparison).   These proxies have been chosen in order to match as closely as possible the 

specifications of the Sentinel sensors.  

 

 Instead of Sentinel-1 images, Radarsat-2 ScanSar Narrow or Radarsat-2 Wide Fine 

images were acquired in dual polarization VV-VH, for Russia and South Africa respectively. 

Images were multi-looked, ortho-rectified, radiometrically calibrated and co-registered. A 9x9 

enhanced Frost filter was applied to reduce the speckle. 

RapidEye high resolution optical (HRO) time-series served as proxy for Sentinel-2. The 

images were ortho-rectified and the observations were converted from digital numbers to top-

of-atmosphere reflectance. The unusable data mask provided along with the images, even 

though perfectible, masked out the clouds. In case of large cloud contamination, tiles were 

acquired multiple times within the same acquisition window. Data gaps of the less 

contaminated images were partially or totally filled combining the overlaying additional 

observations within the same acquisition window. This maximizes the homogeneity of the 

resulting images. To match the spatial resolution of Sentinel-2, images were re-sampled at 

10-m using a nearest neighbor approach. 

MODIS data simulated the medium resolution optical (MRO) time-series Sentinel-3. From 

daily quality controlled reflectance values of Terra and Aqua, 10-day mean composites were 

produced according to the procedure developed by Vancutsem et al. (2007). Because South 

Table 1: Comparison of the Sentinel sensors and their respective proxy for the Russian site 
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Africa had clearer sky conditions, it was possible to reduce the compositing window to seven 

days, allowing a closer monitoring of the vegetation. The mean compositing reduces the 

bidirectional reflectance distribution function and atmospheric artifacts, produces spatially 

homogeneous cloud-masked composites with good radiometric consistency and does not 

requiring model adjustment or additional parameterization. A soil adjusted vegetation index 

with a self- adjusting soil brightness correction factor, the MSAVI2 (Qi, Chehbouni, Huete, & 

Kerr, 1994), was calculated for every pixel of the image as follows:  

        
                                           

 
  

where ρnir and ρred are reflectances in the near infrared and red band, respectively. Time-

series were then smoothed and gap filled with the Whittaker filter (Eilers, 2003). The gap 

filling ability of this filter is particularly interesting in cloud persistent areas.  

Given the correlation between vegetation indices and biophysical variables such as the 

Leaf Area Index (LAI), it is to be emphasized here that the MSAVI2 could be replaced by 

biophysical variables. However, due to the insufficient spatial resolution of the current global 

products (1-km), this is not yet implemented. Since it is planned in ImagineS to provide bio-

physical variables at 300-m, this approach would be tested when the products are made 

available.  

 

2.4. DEVELOPMENT AND TEST SITES 

The algorithm proposed in this ATBD has been tested over the two study sites with proxies 

for Sentinel data. One image acquisition campaign was planned per study site (Fig. 1). For 

the growing season of 2013 in Russia, eleven Radarsat-2 images and 5 RapidEye coverages 

were acquired from February to August (Fig. 2). MODIS acquisitions span from January 2012 

to August 2013. For the growing season of 2014 in South Africa, 12 Radarsat-2 images and 

RapidEye coverages were acquired from August to April (Fig. 3). MODIS acquisitions span 

from August 2012 to April 2014. 

 

 

 

 

 

Figure 1: Location of the South African site and the Russia study site. 
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Figure 2: Data acquisition for the Russian site 

 

Figure 3: Data acquisition for the South-African site 

 

2.5. REQUIREMENTS FOR THE ALGORITHM SELECTION AND 

DESIGN 

The objective is to develop an algorithm dedicated to multi-sensor crop discrimination 

along the season. The classification framework seeks to achieve the best accuracy regionally 

on the test site while ensuring a good performance over other untested agro-systems. The 

method should also be flexible and adaptable to ingest different data sources –such as 

Landsat-8– and ensure consistency between the products. Depending on the layer to be 

produced, the algorithm would run at the pixel or at the object level.  

The pre-seasonal cropland layer and the crop group layer are mapped once a year, at the 

beginning of the season and at the end of the winter respectively, with a spatial resolution of 

250-m (and possibly down to 10-m if high resolution images are available). The crop type 

layer, i.e. the end-of-season product, has the same spatial resolution as Sentinel-2. The crop 

type layer is updated along the growing season at each new high resolution image 
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acquisition whether radar or optical. The update frequency depends therefore of the image 

acquisition plan and frequency – typically one acquisition every 15 days. 

 

2.6. ALGORITHM OUTLINE 

The classification method combines the advantages of each satellite: the temporal 

coverage of Sentinel- 3, the high resolution of Sentinel-2 and the weather independent 

acquisitions of Sentinel-1. However, due to the mismatch between the start of the project and 

the start of the growing season (at least in Russia), the synergy between the three sensors 

will be fully exploited only during the second half of the season (e.g. after the winter). The 

algorithm produces three crop maps with an increased level of thematic and spatial details as 

information is ingested (Figure 4).  

 

Figure 4: Timeline of the production of the crop maps. 

At the beginning of the cropping season, a pre-seasonal cropland extent map is produced 

using a dedicated land cover change algorithm based on the previous year metrics at 

moderate resolution. The best local land cover map available helps this early diagnosis. If 

none is available, a global land cover map (such as GlobCover) is used. Since those land 

cover map do not target agricultural land and since changes may have occurred, an image-

to-map discrepancy has been developed to adjust it to the current regional conditions.  

At the end of the winter, a knowledge-based crop group layer distinguishing winter crops 

from summer crops is delivered thanks to an automated phenological object-based time-

series classification of medium resolution data. A first step relies on a harmonic components 

analysis to spatially group pixels with the same temporal trajectories. As multi-date 

segmentation is known to perform better than single-date but requires the prior identification 
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of key-dates, segmenting on the harmonic components is an alternative to overcome this 

constraint. Second, the automated adaptive recognition decision rule relies on the presence 

or absence of an observable winter growth peak.  

Along the growing season, a multi-sensor crop specific classification is finally achieved. 

The crop type layer is updated as data acquisition progresses, taking into account the 

agricultural calendar and the crop rotation systems. Crops type maps are produced through 

an iterative segmentation, classification and fusion scheme of the moderate and high 

resolution optical and radar images. The updates take place at each new acquisition of high 

resolution imagery.  
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3. ALGORITHM DESCRIPTION 

In this section, the inputs and outputs are described. Then, the different steps of the 

algorithm are presented. 

3.1. INPUTS  

All these inputs are required for each considered pixel.  For the sake of clarity considering 

the number of products, this section details only briefly the inputs. More details are provided 

at the beginning of each algorithm description.  

3.1.1. Satellite data 

The satellite data (radar, MRO and HRO) need to be pre-processed according to the 

procedure detailed in the sensor overview. MRO vegetation index time-series varies between 

-1 and 1. Radar units are expressed in terms of back-scattering coefficients in the VH and VV 

channels. HRO time-series are cloud free top-of-atmosphere reflectance data in the five 

bands of RapidEye. Missing data can still occur at that stage. All images have WGS84 as 

spatial coordinate system. For the crop type layer, a nearest neighbor re-sampling to the 

RapidEye grid degraded at 10-m is needed. 

3.1.2. Land cover map and training data 

The best available land cover map is necessary as training data for the pre-seasonal 

cropland layer. In addition, field data is required for the training of the crop type layer 

classifiers. This field data set consists in field level observations of crop types for which the 

temporal profiles have been extracted. Besides, observations of other non-agricultural land 

cover types have been added to the data set by means of visual interpretation on Google 

Earth and using existing land cover maps. 

 

3.2. OUTPUTS  

For each product, the outputs will be provided by application of the algorithm over each 

time-series. Each product is a single-band raster accompanied by its legend. The resolution 

of each product varies according to the data input (Table 2). 
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Table 2: Products description 

Product Name Temporal resolution Spatial 

resolution  

Thematic resolution 

Pre-seasonal Cropland 

Layer 

Once a year, beginning of the 

season 

250-m Cropland, Non-cropland 

Crop Group Layer Once a year, end of the winter 250-m/10m Winter crop, other crops 

Crop Type Layer Every 15 days, along the 

spring and summer 

10-m Crop types, depending on 

the area of interest 

 

3.3. ALGORITHM DESCRIPTION 

3.3.1. Pre-seasonal Cropland Layer (PCL) 

INPUTS  Seven or Ten-day mean composite time-series of moderate resolution 

vegetation index from the previous year [start of season year t-1  start of 

season year t] 

 Re-sampled and co-registered land cover map 

The core of the method relies on a change detection method called normal iterative 

trimming (Fig. 5). Iterative trimming is a change detection technique that identifies outliers as 

plausible candidates for change (Desclée, Bogaert, & Defourny, 2006) and can be used to 

automate image-to-map discrepancy detection (Radoux, 2010). To identify candidate pixels 

for land cover change between the available map and the time-series (that is the outliers that 

need to be reclassify), a multivariate normal iterative trimming was chosen.  The 

classification considers four time-series features (mean, maximum, minimum, slope between 

the minimum and the maximum) that were extracted from the time-series themselves. 

First, all the mixed classes were considered as outliers and set aside. Second, for each of 

the remaining land cover class, the selection of outliers relied on a probability threshold α 

which specifies the limit at which an observation is considered an outlier. The distribution is 

iteratively trimmed until no more outliers are identified. For the normal case, the outlier 

detection criterion gives: 

                       
     

where χ2 is the upper (100α)th percentile of a   
  distribution with p degrees of freedom. The 

threshold α was set at 0.05. The multivariate normal iterative trimming is applied on each 

pure thematic of the reference land cover map except the mosaic classes. The outliers were 

merged to the mosaic class’ pixels and are subsequently reclassified according to a 

maximum likelihood decision rule. The output classes are defined by the parameters of the 

trimmed classes. A priori probabilities were computed from the initial land cover map with 

mixed classes probabilities redistributed to the closest thematic class. The four metrics were 

scaled and centered to avoid confusion between different metric units. The updated land 
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cover map details as many classes as pure classes in the initial legend. Non-crop classes 

are finally grouped in order to focus the classification on cropland detection.  

 

 

Figure 5: Flowchart of the pre-seasonal cropland layer 
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3.3.2. Crop Group Layer (CGL) 

Two algorithms are proposed to produce the crop group layer because the sites have 

different winter growing conditions. From an agronomic point of view, winter crops in Russia 

characterize crop that need to be exposed to low temperatures (vernalization) in order to 

complete their vegetative cycle whereas winter crops in South Africa complete their 

vegetative cycle before in the spring. Second, no high resolution image was available for 

Russia in the winter period which was not the case for South Africa. To include those high 

resolution images in the winter crop detection algorithm, some modifications were 

mandatory.  It should be noted here that including high resolution images was not the main 

driver of this choice because the same modifications are also applicable in Russia. 

Apart from these differences, the rationale behind the detection algorithm is fundamentally 

the same: exploit the part of the signal particular of winter crops, i.e. an increase of the 

vegetation index corresponding to crop development. 

3.3.2.1. Winter crop detection in Russia 

INPUTS  Ten-day mean composite moderate resolution time-series of vegetation 

index from the previous year [01-07-year t-1  01-03-year t] 

 Pre-seasonal cropland layer 

 

A two-step object-based classification addresses the binary classification of winter crops 

versus summer crops (Fig. 6). In the first step, objects are derived by means of a 

segmentation on the harmonic components of the time-series (Jakubauskas, Legates, & 

Kastens, 2002). In the second, an automated time-series analysis based on phenological 

metrics classifies the objects in the two classes. The previously derived cropland masks out 

the non-agricultural areas.  
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Figure 6: Flowchart of the crop group layer algorithm. 

The harmonic analysis was applied pixel-wise. A Fourier transform converts the input 

time-series into a complex array with a real and an imaginary part. The real ( ) and an 

imaginary ( ) part can be converted to polar form. Each order   is defined by its phase   and 

amplitude   : 
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As the high orders contain mainly noise, only the additive term and the two first harmonic 

are kept. Similar pixels were then spatially grouped based on the similarity of the two first 

harmonic and the additive term using the multi-resolution segmentation algorithm (Baatz & 

Schäpe, 2000) (Fig. 7).  

 

a)                                               b)                                                            c) 

Figure 7: a) MSAVI2 (2013-11-10), bright colors are high MSAVI values; b) color composition 

(additive term, amplitude and phase of the first harmonic); c) crop group layer. The harmonic 

components catch the temporal trajectory of the pixels (winter crop in red) and are a reliable 

base for segmentation 

 

The second step corresponds to the classification of the objects. A knowledge-based 

adaptive decision rule has been defined based on a specific temporal pattern of the winter 

crop: the presence of a winter growth peak (Fig. 8). For each object-level time-series, the 

algorithm extracts three metrics: (i) the snow date corresponds to the dekade during which 

the MSAVI2 signal falls below a threshold, (ii) the maximum of vegetation is the local 

maximum MSAVI2 value at the winter growth peak and (iii) the local minimum preceding the 

winter peak. The simplest decision rule would classify as winter crop every feature with a 

winter peak, but this hypothesis does not hold as other landscape elements also exhibit a 

maximum. Usually, those elements however are characterized by a rapid drop and then 

increase of the signal whereas winter crop shows a plateau corresponding to field 

preparation and sowing. To tighten the rule, the minimum and the maximum are converted 

into local average of the metric values: an object is classified as winter crop if            

          . This filters out objects without a significant increase in their respective 

trajectory.  

 



ImagineS, FP7-Space-2012-1 

Crop mapping along the season  

 

ATBD Crop maps  @ ImagineS consortium 

Issue: I2.00 Date: 29.04.2016 Page:26  

 

 

 

Figure 8: Average temporal profile for the dominant winter crop in Russia and the summer 

crops. 

To strengthen the accuracy of the classification, a cross-validation based on the harmonic 

components is added. The 25-nearest (in Euclidean distance) vectors are identified and the 

final label is decided by majority vote. The harmonic component values are first standardized 

and then averaged per object 

 

3.3.2.2. Winter crop detection in South Africa 

Holding to the same approach as for vernalizing areas, a three-step winter crop detection 

was designed combining an automated detection approach at moderate resolution with an 

object-oriented approach at high resolution. 

First, the slope between the minimum and the maximumn was derived from the MSAVI2 

MODIS time-series. Areas with positive values correspond to winter growing areas whereas 

slow decreasing values characterize, other land cover types such as winter grazing areas. 

Second, if using the slope appears as an efficient automated recognition method, the spatial 

resolution remained to low. To increase the spatial details, a segmentation was carried out 

INPUTS  Seven-day mean composite moderate resolution time-series of 

vegetation index from the previous year [01-06-year t 01-11-year t] 

 RapidEye images until 01-11-year t 

 Radarsat-2 images  until 01-11-year t  

 Pre-seasonal cropland layer 
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on the NDVI high resolution optical images. Average object-level statistics were then 

computed – mean    ,    , NDVI and slope. Third, an unsupervised clustering was then 

applied locally (moving windows of 50x50-km) on sigma and NDVI. As setting the number of 

cluster is always a difficult task but of key importance, the local training allows to reduce the 

variability within the area to be classified. Clusters having 40% or more of their sample 

associated with a positive slope were labeled as winter crops. Refine the delineation of 

winter crop field but also include smaller fields for which the winter growth cycle was not 

picked up because of MODIS spatial resolution.   

 

Figure 9: Flowchart for the winter crop classification with the Free State data set 

3.3.3. Crop Type Layer (CTL) 

INPUTS  Seven or Ten day moderate resolution vegetation index time-series [01-

07-year t-1  harvest] 

 Preprocessed, re-sampled and co-registered radar data [start of spring - 

harvest] 

 Preprocessed, RapidEye data [start of spring - harvest] 

 Crop type field observations 
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Three different processing chains have been developed, one per sensor (Fig. 10). The 

only information shared is the spatial delimitation of the objects. Each sensor has its own 

classifiers and the resulting classifications are fused into the final classification.  

 

 

 

Figure 10: Flowchart of the crop type layer algorithm. 

3.3.3.1. Missing values and smoothing 

As classifiers cannot handle with missing observations, reconstruction of missing data is a 

mandatory step. MRO time-series are smoothed and gap-filled by means of the Whittaker 
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filter (Eilers, 2003). For HRO, due to the short length of the HRO time-series (only 5 

coverages in Russia), traditional filters for filling the missing values were discarded. Instead, 

a temporal linear interpolation was run the incomplete HRO to impute them. At the first 

acquisition of HRO data imputation with linear interpolation is infeasible; missing data are 

thus imputed thanks to a weighted mean of the k-nearest neighbors identified with the radar 

data.  

3.3.3.2. Segmentation 

The Sentinel-2 like images is the primary source for segmentation because of their higher 

spatial resolution. The NDVI of each images were stacked and put into a principal 

component analysis that will reduce the dimension for the segmentation while maximizing the 

variance of the output components. A multi-resolution segmentation algorithm was then 

applied on the time stack of NDVI. Besides, if no HRO image is available at the acquisition of 

the first radar images, the segmentation is applied on the radar data only with its respective 

parameters. 

3.3.3.3. Objects statistics computation 

Object-level statistics are computed using the latest segmentation available. Only average 

values of the input data are computed, that is: the mean MSAVI2,    ,    , and blue, green, 

red, infra-red and red-edge.  

3.3.3.4. Training of the classifiers 

At each acquisition of a high resolution data (either radar or optical), new classifiers are 

trained to include the new observations. One random forest with 800 trees is trained by data 

source: one for the MODIS data, one for the Radarsat-2 data and one for the RapidEye data. 

It should be that several classifiers have been tested and that the random forest was 

outperforming the others for every sensor. Random forests are insensitive to noise and 

overtraining (Breiman, 2001). Their internal selection of variables is expected to prevent from 

the side effects of high dimensionality. 

3.3.3.5. Classification  

At each acquisition of a HR image, the classifiers are applied per data type on all available 

images to produce three sensor-specific crop type maps. 

3.3.3.6. Map fusion 

Several strategies for map fusion have been developed such as the Dempster-Shafer 

theory (Hégarat-Mascle, Richard, & Ottlé, 2003). In this framework,  the performance of each 

classifier resulting in the classification maps to fuse are evaluated with the help of a class-

specific belief function  which measures the degree of belief that the corresponding label is 

correctly assigned to a pixel. For each classifier, and for each class label, these belief 

functions are estimated from another parameter called the mass of belief of each class label, 
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which measures the confidence that the user can have in each classifier according to the 

resulting labels. The fused class label for each pixel is the one with the maximal belief 

function. In case of multiple class labels maximizing the belief functions, the output fused 

pixels are set to the undecided value. In that case, the labels from the most accurate 

individual map are kept.  

As the availability of the training data might be a constraint and because the availability of 

calibration data might change from year to year, the approach chosen to fuse the results of 

the classifiers is rather based on their soft outputs, i.e., their class membership. The class 

membership is of the following form: 

                                        

where        is the estimated membership degree of a object   to class  , and   the number 

of classes. The vectors prMODIS (x,) prRADARSAT (x) and prRAPIDEYE (x) for each object resulting 

from the three independent classifications are then multiplied class-wise and the class that 

maximizes the class membership is taken as the final output of the classification.  
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4. QUALITY ASSESSMENT 

Confusion matrices as well as the overall accuracy, the producer’s accuracy and the 

user’s accuracy are the measures chosen to assess the products. The overall accuracy is 

the total classification accuracy. The producer’s accuracy refers to the probability that a 

certain land-cover of an area on the ground is classified as such, while the user’s accuracy 

refers to the probability that a pixel labeled as a certain land-cover class in the map is really 

this class. 

For the Russian site, the accuracy of the three products was assessed thanks to the field 

data collected in July 2013 and an available vector layer delineating the field parcels. This 

vector layer of field boundaries were manually digitized on Landsat-5 and 7 images and last 

updated in 2012. The data set contains 600 punctual observations of 12 different agricultural 

dominated by winter wheat and spring barley. A parcel database is also available. Fields 

were manually digitized on Landsat-5 and 7 images and last updated in 2012. The punctual 

observations were converted in areal observations thanks to this database. An additional 

visual verification of the parcel boundaries was completed using the RapidEye images of the 

current year. In general, the quality of the data set is good but some fields have been 

discarded due to their inadequation between their label and their expected crop development 

calendar.  

For the South African site, field data was derived from 1) cropland parcel information for 

the PCL and 2) two sets of ground truth samples collected in the framework of the Producer 

Independent Crop Estimate System. The field boundary data set has been manually digitized 

by visual interpretation on SPOT-5, -6 and -7. The latter two data sets cover the entire area 

of interest for the 2013 winter season and the 2013-2014 summer season. The winter 

season data set has about 2400 samples while the summer season one about 1200. 

4.1.  VALIDATION OF THE PCL 

4.1.1. Russian Site 

The selected features for the iterative trimming are the sum, the mean, the range and the 

norm of the pixels’ signal. A visual analysis revealed that the pre-seasonal cropland layer is 

spatially consistent to separate urban areas, forests and water. However, it appears that for 

some fragmented areas, e.g. small forest patches, the spatial resolution is insufficient. The 

field boundaries were converted to a raster; only pixels covering at least 50% of cropland 

were considered as such. The accuracy of the product was assessed thanks to the confusion 

matrix and the derived accuracy indices. The overall accuracy was 79%. Most errors are due 

to the fact that there is no natural vegetation class, therefore the cropland extent is 

overestimated (Fig. 11). One has to bear in mind that the reference used for the trimming is 

expected to improve as a high resolution reference would become available at the next of the 

season. 
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Figure 11: Result of the iterative trimming and the pre-seasonal cropland layer 

 

4.1.2. South African site 

The selected features for the iterative trimming are the sum, the max, the min and the 

maximum slope of the pixels’ signal. A visual analysis revealed that the pre-seasonal 

cropland layer is spatially consistent to separate urban areas, forests and water (Fig. 12). 

However, it appears that for some areas mostly associated with less intensive cropping 

systems, the spatial resolution is insufficient. About ten thousand were extracted from the 

NLC2009 map and converted in two classes: cropland, non-cropland (Table 3). The accuracy 

of the product was assessed thanks to the confusion matrix and the derived accuracy 

indices. The overall accuracy was 76%; omission errors (43%) mostly occurred in less 

intensive areas. 

 

Table 3: Confusion matrix for the pre-seasonal cropland layer -- Free State 

Map \ Reference Non Cropland Cropland Users’ Accuracy 

Non cropland 626 125 83.4% 

Cropland 80 169 67.9% 

Producer’s accuracy 88.7% 57.5% Overall Accuracy: 75.9% 
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Figure 12: Pre-seasonal Cropland Layer - Free State Province 
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4.2. VALIDATION OF THE CGL 

4.2.1. Russian Site 

The algorithm described above was applied to produce the crop group layer of the 

growing season of 2013 (Fig. 13). Its accuracy was assessed and showed a global accuracy 

of 82% (Table 4). This level of accuracy is satisfactory considering the timing of this early 

estimation.  

  

Figure 13: Crop group layer with land cover 

Table 4: Confusion matrix for the crop group layer 

Map \ Reference Other crops Winter Wheat User accuracy 

Other crops 348 74 82% 

Winter crop 35 144 80% 

Producer Accuracy 91% 66% Overall Accuracy: 82% 

For the winter crop class, one can observe an omission rate of 44% (100-Producer 

accuracy). This omission error was investigated thanks to the Pareto boundary (Boschetti, 

Flasse, & Brivio, 2004). At their early development stages, winter crops exhibit a large within 

field heterogeneity (Fig. 14). The error matrix does not consider contextual influence of mixed 

pixels on the product accuracy. The Pareto boundary method is an alternative to deal with 

these shortcomings. The number of low resolution pixels covering multiple classes is closely 

linked to the ground features (reference data) and is a function of their shape, size and 

spatial patterns. The difference in spatial resolution between high and low resolution data is 

referred to as the low-resolution bias. The resolution bias sets down the omission and 

commission errors as conflicting objectives: residual error after classification cannot be 
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avoided. Any attempt to reduce the commission errors will inevitably lead to an increase of 

the omission errors and conversely. A region of unreachable accuracy limited by the Pareto 

boundary because of the resolution bias decouples the errors due to the spatial resolution 

and the method. The Pareto boundary determines the maximum user and producer’s 

accuracy values that could be attained jointly and represents such a lower limit as a 

boundary in the OE/CE bi-dimensional space. To generate the Pareto boundary, the high 

resolution reference map is degraded to the low resolution pixel size. Each new pixel value 

corresponds to the percentage of high resolution pixels of the class of interest. A set of low-

resolution product is obtained by thresholding the low resolution reference map. For each 

threshold defining the percentage for which a pixel is considered as vegetation, the pair of 

efficient error rates OE/CE is computed. The line joining all these points defines the Pareto 

boundary of a specific high resolution reference to a defined low-resolution pixel size. 

Distance between the product and the boundary indicates the performance of the method.  

 

Figure 14: a) Reference winter crop map degraded at 250-m b) the corresponding crop 

group layer 

First, the reference map was produced by classifying on a pixel basis two RapidEye 

images (Fig. 14) with an unsupervised clustering followed by a supervised labelling of the 

clusters. The resolution of the reference map was then degraded to the products. The pixel 

value corresponds to the percentage of high resolution winter crop pixels contained within it. 
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The Pareto boundary is above the 0.4 isoline which means that at this stage in the season a 

large part of the omission error is due to the spatial resolution (250-m) (Fig. 15). 

 

Figure 15: Pareto boundary for the winter crop class 

 

4.2.2. South African site 

The algorithm described above was applied to produce the crop group layer of the 

growing season of 2014 (Fig. 16). Its accuracy was assessed and showed a global accuracy 

of 97% (Table 5). The combination of RapidEye and Radarsat-2 data improved the field 

delineation and the spatial details at the cost of some commission, e.g. small tree lines. 

 

Table 5: Confusion matrix for South Africa 

Map \ Reference Other crops Winter crops Users’ Accuracy 

Other Crops 2171 29 98.7% 

Winter Crops 80 169 68.9% 

Producer’s accuracy 97.8% 78.2% Overall Accuracy: 96.8% 
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Figure 16: Successive improvements on the detection and delineation of winter crops 

 

4.3. VALIDATION OF THE CTL 

4.3.1. Russian Site 

The CTL accuracy was tracked along the season; especially, the overall accuracy was 

chosen as indicator. Three different classifiers have been tested: the Naïve Bayes, the 

Support Vector Machine and the Random Forest. It was found that the Random Forest 

outperfomed the two others for every sensor and was therefore prefered (Fig. 17) and 

therefore was chosen to be implemented in the processing chains.  Individually, the 

RapidEye-based classifcations meet the accuracy target (0.85) in mid-June. With the fused-

maps (Fig. 18), the measured accuracy meets the target (0.85) also in mid-June (Fig. 19). 

The overall accuracy saturates then around 90% until the end of the season. The forest belt 

pattern is well captured and the resolution allows to map grassland accuracetly while it was 

not achievable with MODIS only.   
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Figure 17: Evolution of the overall accuracy along the season by classifiers and by sensors 

 

 

Figure 18: Evolution of the overall accuracy for the fused map 
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Figure 19: Crop Type Layer - Tula Oblast 

4.3.2. South African site 

The CTL for the Free State Province was validated with an independent set of about 1200 

field observations. The overall accuracy reached a maximum of 78% at the end of the 

season (Figure 20). The maize and the planted pastures classes (the two most dominant 

classes) were the two classes with the highest accuracy (Fscore >0.8) (Figure 21). 

 

Figure 20: Evolution of the Overall Accuracy along the season for different classes included 

in the CTL for the Free State Province 
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Figure 21: Evolution of the F-score along the season for different classes included in the 

CTL for the Free State Province 

The CTL allows identifying clear crop patterns such as an intensive maize area from 

Welkom to Bloemhof whereas the vicinity of Heilbron is dominated by soybean (Figure 22).  
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Figure 22: Crop Type Layer – Free State Province 

 

4.4. LIMITS OF THE METHOD 

The method proposed in this ATBD combines three different kinds of sensor and might be 

extended to more which reduces the sensor dependence and enhances the probability of 

acquiring during a good discrimination window. This combination makes the classification 

method more robust to address the large spectrum of agro-systems of the world.  

Several peculiarities of the data sets used might introduce some limitations. First, the 

RapidEye imagery was at the top of canopy level. Because the acquisition window necessary 

to image the whole study of interest spanned on up to 20 days, differences in the 

atmospheric conditions are more than likely. Second, clouds were masked using the default 

RapidEye quality flag which tends to be affected by omission errors. Third, due to the large 

acquisition windows, difference in vegetation stages may have occurred throughout the area 

of interest which complicates the recognition process. These factors constrain particularly the 

reachable accuracy when mapping large areas as crop practices, climate gradient and 

landscape properties are likely to be heterogeneous. As an example, the Free State Province 

is characterized by a strong longitudinal gradient in meteorological conditions as well as in 

planting density. In addition, the planting window for maize stretches on several months. All 
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together, these factors lead to natural diversity of maize spectral-temporal signature. The 

additional variability resulting from the data set itself, may explain why the Fscore of certain 

crop types did not exceed 0.7. Effects of the between tile variability are especially visible at 

the beginning of the season. 

Regarding the pre-seasonal cropland layer, the reference has to be of reasonable 

accuracy in order to produce accurate results. Indeed, if a class is dominated by mislabeled 

pixels, the trimming would tend to remove the correctly labeled data because of the spectral 

distribution shift introduced by the mislabeled pixels. Besides, other features might appear 

more relevant in other agro-systems and could easily replace the four proposed here. In the 

case of high cloud coverage during the winter, the identification of the winter growth peak 

might be less accurate leading to more confusion between winter crops and summer crops. 

In the full-season case, defining the parameters for the segmentations and the number of 

clusters for the multi-source crop group recognition would need some fine tuning to be 

adapted on a new site. Finally for the machine learning step, texture, vegetation indices, 

temporal features might be considered to increase the accuracy of the recognition. The main 

constraint is the availability of training data. Strategies can be set up to provide such data 

sets without sending teams for in-situ data collection such as working with the time-series of 

the previous year, dynamic time warping to identify likely trajectories (Petitjean et al., 2012) 

expected trajectories (growing degree days), crop calendars, decision rules, crowd-sourcing 

and kriging (Masse, 2013). To ensure that the approach presented in this ATBD is applicable 

in the absence of within season calibration/validation data –which would be the case when 

running the algorithm along the season in near real time– the fusion of the maps coming from 

different sensors does not rely on field data. In case such data become available, one could 

use them to weight the class membership according to class-wise accuracies of the maps. 
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5. CONCLUSION AND PERSPECTIVE 

The pre-seasonal cropland layer, the crop group layer and the crop type layer capitalize 

on the synergy of Sentinel-1, Sentinel-2 and Sentinel-3 like images to monitor continuously 

the cropland status along the growing season. The products provide consistent maps with an 

increasing level of thematic and spatial details as information accumulates and exceed the 

accuracy target of 85%. The classification system was designed to reduce the dependence 

to a specific data source which is desired for operational monitoring. Beside, emphasis was 

put on the portability of the method. 
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