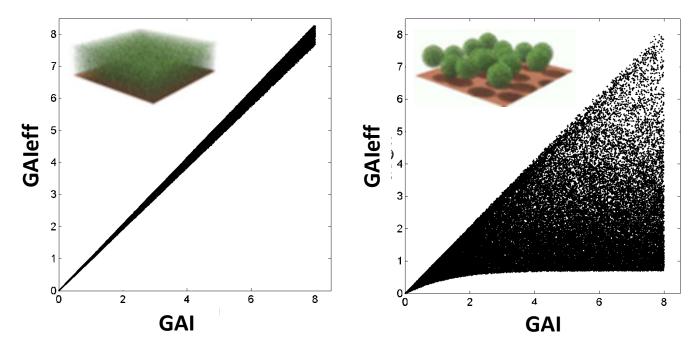
Comparing vegetation structural variables retrieval performances when using mono directional, multidirectional or albedo observations

Baret, F. (1), Weiss, M. (1), Verger, A. (2) and Verhoef, V. (3)
(1) INRA-EMMAH UMR 1114, Avignon, France
(2) CREAF, Barcelona, Spain
(3) University of Twente, the Netherlands

Background

• Structural variables are key inputs for:


- Main canopy functioning processes
 (photosynthesis/transpiration/respiration ...)
- Remote sensing observations through radiative transfer (scattering, absorption, fluorescence...)

• Several variables related to the green elements

- GF (green fraction in the view direction)
- FAPAR (FAPAR_{bs} FAPAR_{ws} FAPAR_{day})
- LAI / PAI / GAI / GLAI with variants (effective/apparent)

	Only leaf	All vegetation elem.		
Green+non green	LAI	PAI		
Green	GLAI	GAI		

LAI and effective GAI

Effective GAI (LAI) defined consistently with indirect measurement methods, The effective GAI (GAIeff) is the LAI value that provides the closest directional variation of the GF under turbid medium assumption

Apparent GAI (LAI) defined as the value accessible from the observation:

Depends on:

+ Observational configuration

- + Assumptions on canopy structure (RT model)
- + Inversion technique

+

Objectives

Evaluate the retrieval performances depending on:

The variable targeted

- GF(vza)
- FAPAR_{bs}(sza)
- FAPAR_{ws}
- FAPAR_{day}(sza_{min})
- GAI_{eff}
- GAI

The type of canopy structure

• Turbid

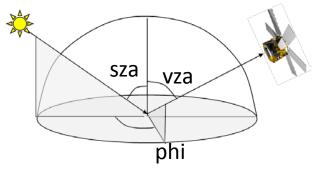
• clumped

The observational configuration

- Multi-directional
- Albedo
- Mono-directional

Methods:

- Leaf optical properties: PROSPECT
- Soil reflectance: typical soils with brightness
- Canopy reflectance:
 - SLC model (clumping at the stand level)
 - LAI, ALA, Crown-Cover, D/H, hot: 5 variables
 - Total of 11 input variables

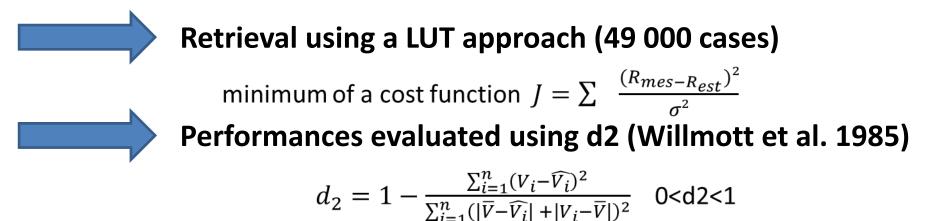


- SLC with Crown-Cover=1
- Total of 9 input variables

Distribution of RTM input variables for Test cases and LUT generation

Uniform (independent) distributions considered within the typical range of variation

	Variable	Mini	Maxi	
Canopy	LAI	0	8	
	LIDFa -1.0		1.0	
	LIDFb	-0.3	0.3	
	hot	0.1	0.5	
	Crown-cover	0.3	1.0	
	D/H	0.2	1.0	
Leaf	Ν	1.20	2.20	
	Cab (µg m-2)	30	90	
	Cdm (gm-2)	0.0030	0.010	
	Cw. Rel.	0.60	0.85	
Soil	Bs	0.50	1.0	


Angles	Values (°)			
sza	30 45 60			
vza	0 15 30 45 60			
phi	0 90 180			
13 directions considered				

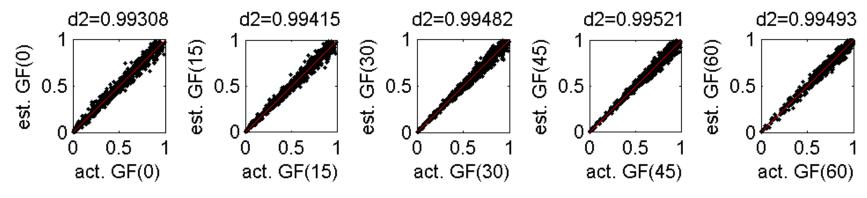
Sent	inel 2	Band	ls (nm)		
560	670	705	740	865	1610	2190
7 bands considered						

11 input variables

Output variables

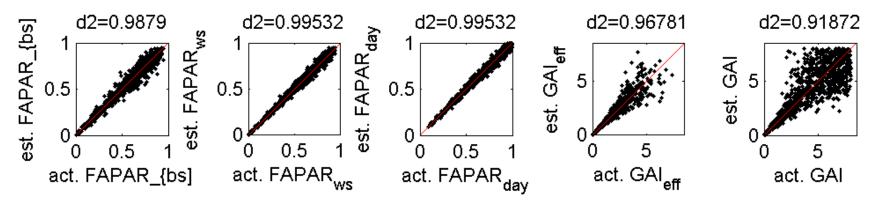
- GF(vza) : green fraction (13 directions)
- FAPAR_{bs}(SZA) : black sky FAPAR
- FAPAR_{ws} : White sky FAPAR
- FAPAR_{day} (SZA_{min}) :Daily integrated black sky
- GAI_{eff} :effective GAI: using Miller's formula $LAI = 2 \int_{0}^{\pi/2} -\log(1 - GF(vza)) \cdot \sin(vza) \cdot \cos(vza) d vza$
- GAI : Actual GAI : input of the RTM

Test and LUT combinations

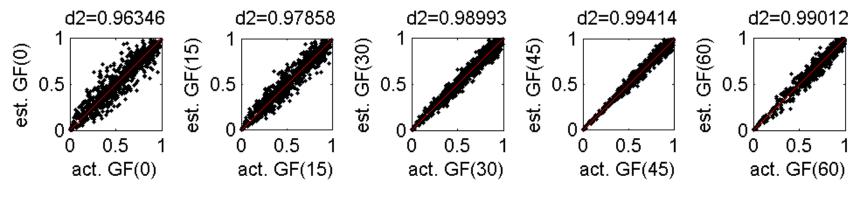

Test: uncertainties added (0.01 additive, 3% multiplicative)

		Test (1000)		
		turb	clump	
LUT (49000)	turb		✓	
	clump		\checkmark	

Combination of test and LUT type of canopy structure

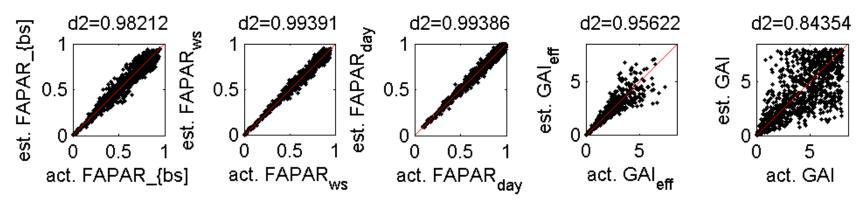


Sample results

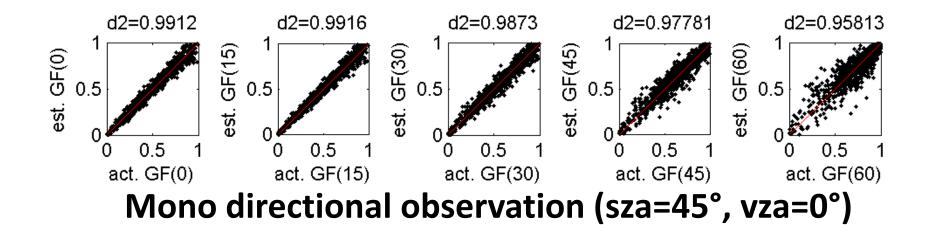


Multidirectional (13 directions)

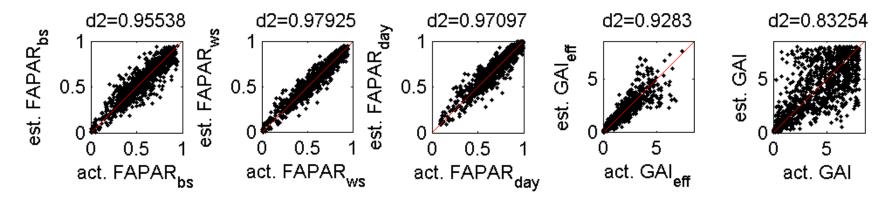
Test: clumped LUT: clumped



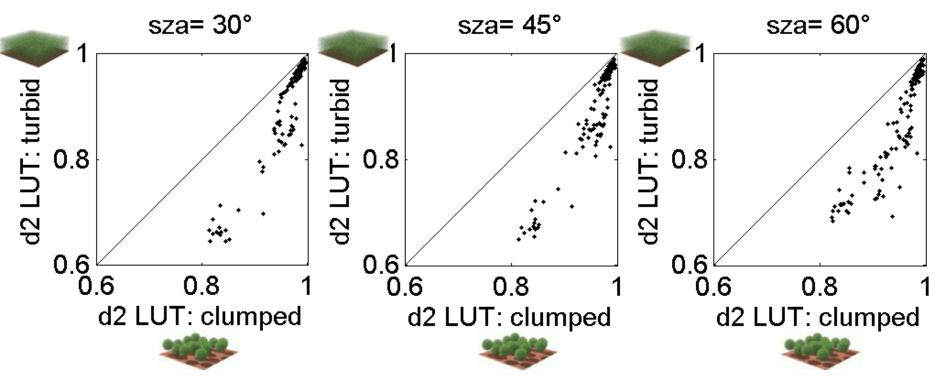
Sample results



Albedo

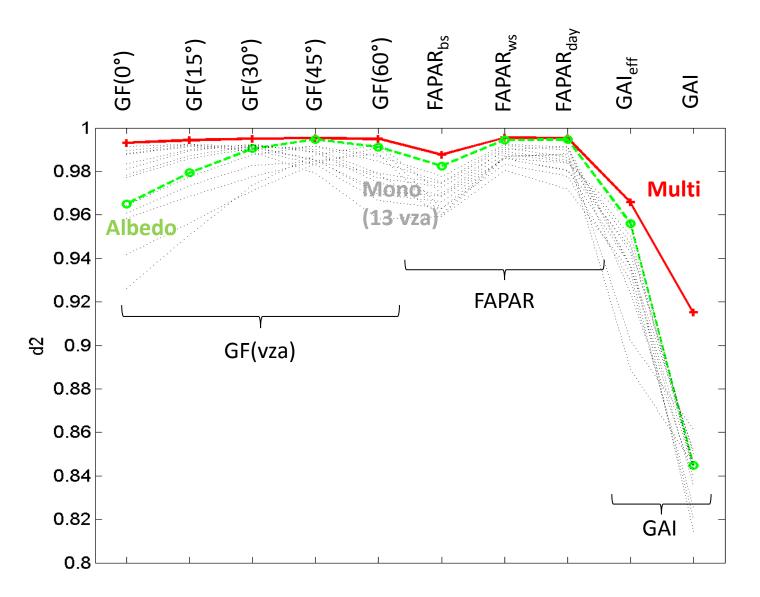

Test: clumped LUT: clumped

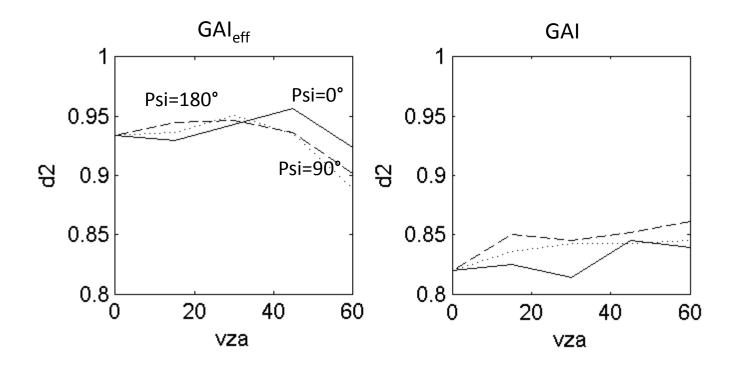
Sample results


Test: clumped LUT: clumped

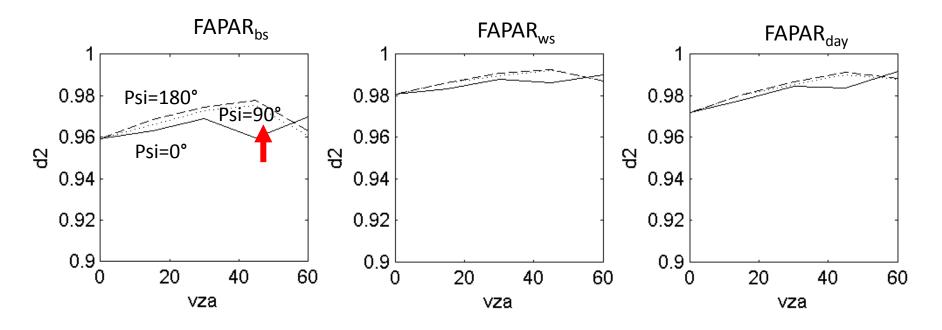
RESULTS: effect of sun zenith angle (sza) (all 10 variables together) LUT: turbid LUT: clumped + 30° Multi o 30° Albedo 30° Mono 0.9 0.9 @ sza=30°/60° sza=30°/60° 0.8 0.8 0 d2 엉 0.7 0.7 + 60° Multi o 60° Albedo 60° Mono 0.6⊾ 0.6 0.6 0.7 0.7 0.9 0.6 0.8 0.8 0.9 d2 @ sza=45° d2 @ sza=45°

Smaller sun zenith angles lead (generally) to better performances
Select sza=45° to illustrate results in the following
Clumped LUT lead (generally) to better performances)


RESULTS: effect of LUT assumptions (@ sza=45°, all 10 variables together)

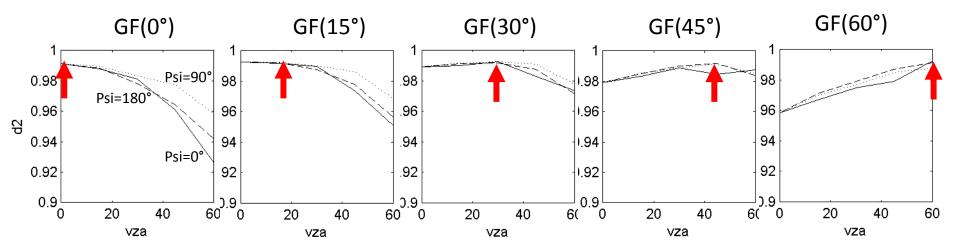

Using a clumped LUT lead (generally) to better performances

Performances depending on variables


GAI estimates from Mono-directional

Little sensitive to view direction

LAI_{eff} much better retrieved


FAPAR estimates from Mono-directional

Slightly better @ vza=45°

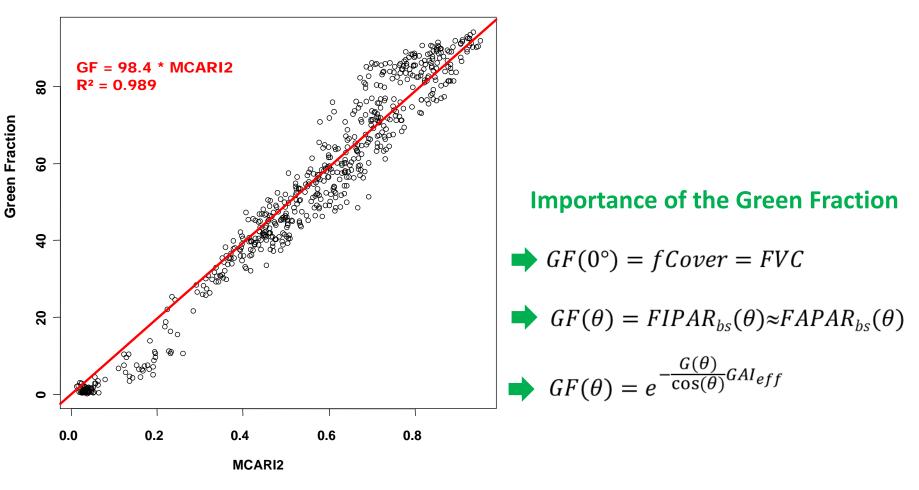
FAPAR_{ws} & FAPAR_{day} much better retrieved

Green fraction performances estimates

Best estimates of GF when actually observing in the considered zenith directions,

... and relatively independently from the view azimuth

The experiment


Phenomobile: Field robot

Spectrophotometers RGB camera LIDARs @ vza=0° @ vza=57°

Results

Vegetation Indices	NDVI	МТСІ	MCARI2	REIP	PRI	CRIgreen
Green Fraction	0.914	0.916	0.980	0.840	0.896	0.833

Conclusion

- Effective LAI: a definition is proposed: The effective is the LAI value that provides the same GF(vza) under turbid medium assumption (Applying Miller's formula or GF(57°))
- Strong differences in retrieval performances between variables
 - GF > FAPARw > FAPARb > LAIe > LAI
 - Importance of the GF:
 - at kilometric scale: GF(vza) input to DGVM: consistency with the structure assumptions
 - At decametric scale:
 - use prior information on the type of canopy to derive other variables (FAPAR, LAI)
 - A sensor looking at 57°?
- Improvement (generally) when using a more realistic RT model (even with 2 additional parameters)
- Need to extend the investigation using
 - More independent test cases (several scales of clumping, soil BRDF ...)
 - Uncertainties attached to the 'measurements'
 - Alternative inversion method
- Results independent from the temperature (to prevent any question!)