TOWARDS THE EXPLOITATION OF SENTINEL-1, -2 AND -3 FOR HIGH RESOLUTION CROP MAPPING ALONG THE GROWING SEASON

François Waldner¹, Igor Savin² and Pierre Defourny¹

¹ Université catholique de Louvain (BE) ² Dokuchaev Soil Institute (RU)

GV2M – 5 February 2014 - Avignon (FR)

Agriculture monitoring, why?

Agricultural statistics are needed at the regional, national and international levels by governments, traders and food industries. For food security and to stabilize the market prices

 \rightarrow G-20 initiatives: AMIS–FAO and GEOGLAM

Crop specific information is a prerequisite for monitoring

There is a need to improve agricultural monitoring. Crop type information is a pre-requisite:

Partial time-series for annual crop type maps

Crop identification exploits differences in:

- spectral properties
- timing of those properties
- crop architecture

Because of rotations and agricultural practices, fields are sown with a different crop each year

→ annual crop type maps

To support monitoring, crop maps need to be available asap in the season

> partial time-series

An improved level of details along the season

OBJECTIVE: Produce and update crop maps along the season as information accumulates

Exploiting the complementarity of S-1, S-2 and S-3

1-1-11		
	The Dest of The	
		1 1

	Sentinel-1 (SAR)			
+	 weather independent temporal resolution (night acquisitions) 			
_	number of bandsdifficult to interpret			
Sentinel-2 (HRO)				
+	spatial resolutionnumber of bands			
	cloud contamination			

• temporal resolution

	Sentinel-3 (MRO)		
+	•	temporal frequency number of bands	
	•	cloud contamination spatial resolution	

Efficient and robust crop mapping

The study focuses on two contrasted areas

South African site

- Free State Province is SA's breadbasket (70% of total grain production)
- sub-humid to semi-arid climate
- Field size: 0,5-40 ha
- Home gardens, small scale and commercial farming
- Continuous growing season
- 129 000 km²

The study focuses on two contrasted areas

Tula oblast

- Continental climate
- Field size: 70-ha
- Winter crops are planted in August, summer crops in April

• 26 000 km²

Proxy data acquisition plan

Large sites to simulate the wide swath of sentinel-2 (280-km)

ightarrow integrate the spatial gradient of vegetation conditions across the image

Russia (acquired):

South Africa (in acquisition):

13 Radarsat-2 images (300x300 km)13 Radarsat-2 coverages (200 70x150 km im.)5 RapidEye coverages (500 25x25 km images) 13 RapidEye coverages (4300 25x25 km im.)

RapidEye's view

Cropland mask based on the previous year time-series

- general maps
- global maps need local tuning
- changes
- how to allocate the mosaic classes?
- → Image-to-map discrepancy detection to update the land cover map (GlobCover 2009)
- \rightarrow Easily transposable to other sites

Multi-variate normal iterative trimming to detect outliers

Pre-seasonal Cropland - Tula 2013

Assessment of the pre-seasonal cropland layer

Automated and adaptive winter crop detection

Assessment of the crop group cropland layer

Cropland	Crop groups		Crop types	
	Reference			
VISUAI CNECK	Classification	Other	Winter crops	User Acc.
	Other	346	104	0.77
	Winter crops	37	143.00	0.79
	Producer Acc.	0.90	0.58	
	Overall Acc.	0.78		
	Pareto Boundary (Overall Accuracy : 80%)			
			Pareto Boundary 250-m Winter crop map	
	0.8-			
Winter crop within field	5			
variability at the end of	5.0 E			-
the winter limits the				_
accuracy	8			

0.2

0.0

0.2

0.6

Omission error

0.4

0.8

1.0

Crop Groups - Tula 2013

Water bodies Urban Coniferous forest Broadleaved forest Winter crops Other crops

An iterative segmentation-classification-fusion approach (at each new HR acquisition)

Conclusions

Support agriculture monitoring by providing 3 products along the season using S1, 2 and 3:

- Reduce dependence on data type
- Improve the spatial and thematic accuracy aling the season
- Using S2 defined objects improves the classification of SAR images
- S-3's frequent revisit capacity allows updating rapidly crop information, even before the spring
- 90% of overall accuracy at the end of June

Conclusions

Thanks for your attention !

<u>francois.waldner@uclouvain.com</u> <u>www.fp7-imagines.eu</u>

